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Abstract - This paper dwells upon the promising 3D technology 
for mobile robots and automation industry. The first part of the 
paper describes the design details of our own 3D Time of Flight 
(TOF) scanning system based on 2D laser range finder. The 
second part presents a specific segmentation technique for 3D 
outdoor urban environments by the common detection of plane 
models. In a few words, the technique separates the raw data into 
sparse and dense points, followed by the segmentation of the dense 
points into urban background and foreground objects. In the end 
we present some experimental results of real-world data-sets   
taken from the repository1,2 of the Leibniz University in        
Hannover, Germany.  

I.  INTRODUCTION 

The paper includes two main parts. The first part is focused 
on the sensor design and its construction while the second part 
deals with the segmentation of urban scenes represented 
through point cloud data.  

There are many possibilities to acquire 3D information from 
the surrounding environment. The measurement methods can 
be divided into three major categories based on applied sensor 
and sensing technology: stereo vision with two or more     
cameras [1], active triangulation [2] and time-of-flight (TOF)   
measurements. One of the most precise TOF measurement  
systems is based on laser scanners. Further on, this paper is 
focusing on this particularly type of sensor. The 3D laser range 
finder (LRF) is a relatively new and active remote sensing sys-
tem which has been applied also in the mobile robotics domain 
in the last ten years. The application domain of these sensors is 
extending from the underground mine measurement to the  
urban environment and even aerial 3D image acquisition.  

Exploring the outdoor urban environment is the next         
milestone of future robotic systems. Due to advanced scanning 
technologies the vision of widespread 3D data is becoming 
reality. Large scale urban scenes are now analyzed and 
processed   using their 3D point cloud data representation. This 
is playing an important role in mobile robotics applications 
such as object or scenario detection, navigation, obstacle 
avoidance, surveillance and even service robots.  

The segmentation of 3D data-sets [3] is a vital part of under-
standing urban scenarios. Besides the essential task of         
separating independent objects, segmentation can be helpful for 
localization, classification and feature extraction. Performing 
the task at hand is very difficult due to background vs.        
foreground related problems [4]. Furthermore, the real-world 

data-sets are noisy and present an uneven sampling1, thus being 
the result of ground-based scans2 with point densities that   
dominate from the direction of which the scan is taken. In   
addition to this the low- or non- reflective surfaces are barley 
or not even represented (e.g. shiny objects or windows).  

A vast amount of work has been done in this direction with 
encouraging results. But from the increasing scale and       
complexity of 3D data-sets, raises the need of simple 
processing techniques with well-known methods [5], especially 
from computational geometry. The problem of extracting 3D 
surfaces is widely spread in point cloud computation [6, 7] 
using high density data-sets. On the other hand, these          
approaches are not suitable for mobile robots applications.      
In opposition, the use of plane fitting combined with plane 
sweeping [8] is much  relevant to the task at hand. In cluttered 
indoor scenes, e.g. in a kitchen or office, the environment is 
mostly composed out of squared furniture and walls. Mean-
while in an outdoor urban scene, e.g. university campuses or 
streets, we encounter buildings, walls, fences, trees, cars and of 
course humans.  

Our approach presents a robust segmentation technique for 
separating background objects from foreground objects by  
fitting 3D plane models. At first, the noisy points are removed 
from the raw data, thus being referred to as sparse points. The 
remaining points, also called dense points, are then used for the 
segmentation. After correctly detecting the plane models, two 
different point clouds are obtained. One which represents the 
large scale objects (e.g. ground, buildings and walls) and the 
other one containing small scale objects (e.g. humans, cars, 
trees, fences). At the end, bounding boxes are attached for each 
foreground object by segmenting the foreground.  

The paper has the following structure. In Section II we are 
discussing about state of the art and some related work. Section 
III presents the 3D laser scanning system. In Section IV the 
segmentation technique is detailed and in the last section we 
present the experimental results.  

II.  RELATED WORK 

The TOF laser sensor is usually based on a transmitter-
receiver laser diode pair which can give distance information 
from a few centimeters till hundreds of meters with a relative 
accuracy of less than 1 %. Commercial laser range finders like 
Sick, Leica, Riegl or Velodyne make use of a rotary mirror 
system through which the laser beam is swept along a surface 
in order to gain 2D or 3D information [9].  



 

 

In order to get information from the third dimension, the 
standard 2D laser scanners are often used with an auxiliary 
rotary mechanical system. The 2D laser is then mounted on 
that system, obtaining the third degree of freedom for the laser 
beam. Such an approach based on servo actuator system was 
used in [10, 11].  

The main motivation for developing a custom 3D laser  
scanning system is the fact that the available commercial 3D 
laser are either not suitable for mobile robotics applications 
(they are too heavy and they need too much power for data 
acquisition) or they are too expensive compared to a standard 
2D LRF [12]. The designed 3D LRF meets the requirements of 
the state of the art 3D laser sensors used in the mobile robotics 
community [13] and the cost of it is less than 10% of a     
commercial version.  

Over the last decade, the task of processing point clouds data 
taken from urban environments has become more and more 
relevant. One popular application is the segmentation of urban 
models as described in [14] using the Hough transform.          
In opposition we have the state of the art [3, 4] where          
algorithms are developed to locate, segment, represent and 
classify most small objects in scanned point clouds of a city. 
Despite the great results, the system proposed in [3, 4] would 
be considered an overkill for simple urban tasks due to its large 
amount of resources needed.  

Other approaches for segmentation of urban scenes are using 
systems that combine 3D laser scanning with vision [15, 16]. 
The authors of [15] describe a method for segmenting and  
detecting artificial objects by making use of structure and   
appearance information. The structure information detection is 
computed from 3D range data-sets and the appearance        
information from the image datasets. Unfortunately, the      
approach from [15] was not tested for real-life scenes and we 
cannot anticipate the results. On the other hand, in [16], we 
have a segmentation technique based on salient regions. It is a 
bottom-up process without any high-level priors, models or 
learning being robust against noise and outliers.  

In our case, unlike images, we cannot use colors or textures 
as cues and unlike most computer graphics and CAD segmen-
tation problems, the input is a noisy point cloud representing a 
scene rather than a clean surface model of an individual object. 
Our system does not need an objects’ database for matching 
models or human supervision.  

III.  CONSTRUCTION OF 3D LRF 

This section introduces the design and construction details 
regarding the 3D laser module. This module is based on a 
commercial Sick LMS200 2D laser product for which an    
auxiliary mechanical part was constructed in order to obtain 3D 
data sets.  

A.  3D Sensor Design and Construction  
The key component of the 3D sensor is the 2D LRF for 

which the rotary platform was designed. There are more      
possibilities to rotate the LRF, i.e. around the yaw, pitch and 
role axes, thus achieving a yawing, pitching or rolling 3D   
sensor [13]. Each of these setups has its own advantage and 
disadvantage.  

As for the mobile robots the most common approach is the 
pitching scan, this solution was adopted for the current design. 
The mechanical design shown in the Fig. 1 has two parts. One 
fixed part containing the driving servo motor (left) and the  
rotation encoder (right) and the other is the mobile rotary part 
on which is placed the Sick LMS200.  

For the driving motor a Hitachi 12 [V] servo motor was   
chosen with a minimum rotation of 0.45°, while for the rotation 
sensor a varying resistor was considered. The motor control 
and the serial interface to the PC were solved using an AVR 
microcontroller based Cerebot2 type board. This type of board 
as well as the other mechanical and electrical components       
of the prototype are low cost products and available on the 
market.  

 

  
Figure 1. The design (left) and the prototype (right) of the 3D sensor  

 
The Sick LMS200 has a depth resolution of 2 [cm] and an 

angular resolution of 0.25°, 0.5°, or 1° depending on the     
configuration. The scanning cone of the device can be set   
either to 100° or 180° depending on the actual needs, while the 
maximum range of readings is up to 80 [m]. The scanning time 
is around 15 [ms] and additional time is required to send the 
data to the PC at 9600, 19200, 38400 or 500000 [kb/s]. Thus a 
complete 3D scan may require a few seconds.  

B.  Measurement Model and Data Acquisition  
For a pitching type of scanner the third information about a 

point is from the pitch angle information. The coordinates of a 
3D point result from the distance to the surface, the yaw    
measurement angle of the beam and the pitch angle moving of 
the mechanical part. Thus a scan point can be represented as a 
tuple of the form (𝜌𝑖;𝜃𝑖 , 𝛾𝑖) where 𝜌 represented the depth  
information from the LMS and 𝜃, 𝛾 are the yaw and pitch   
measurement angles from the reading. The Cartesian coordi-
nates of a point hence can be computed by the means of  
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In Equation (1) the displacement between the center of the 

robot and the 3D sensor was not taken into account. This could 
be introduced into the mathematical model by means of an  
additional translation term.  

Also the error induced by the misalignment between the    
rotation axes of the laser mirror and the pitching ax is not    
discussed. This introduces a systematic error which can be  
detected by tests and eliminated by considering a constant term 
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in the above equation. A more detail discussion regarding the 
error budget can be found in [17].  

A typical indoor scan for an area of interest (AOI) between   
-30 and +60 pitch angle is presented in Fig. 2. As it can be seen 
in this figure, the objects being closer to the right and left edges 
of the AOI are represented with a higher density of 3D points, 
while in the center the density is lower. This is due to the    
distribution properties of the pitching scan acquisition mode. In 
case that the AOI would be the central region, than the yawing 
or rolling scan method should be chosen.  

 

  
Figure 2. Simple indoor 3D laser scan.  

Raw point cloud data (left) and elevation map (right)  
 

The above mentioned scanning system is still in develop-
ment and being fine-tuned. The point cloud presented in Fig. 2 
is just a simple indoor scan for demonstration. We want to have 
complete and complex point clouds and our goal is outdoor 
urban 3D scanning.  

IV.  SEGMENTATION OF POINT CLOUDS 

Our method takes the raw data and cleans it using a          
statistical analysis of point densities. Points which are sparse 
are not taken into consideration for the following steps. The 
entire scene is then fitted with 3D plane models. Meanwhile 
our system is filtering models which are not suitable. Thus  
being very small/large planes or planes with scattered inliers. 
Next step will be to separate the background objects from the 
foreground objects. All the models’ inliers we will refer to as 
background and the rest will be the foreground points. In the 
end we will compute bounding boxes for each independent 
object in the foreground point cloud. In some cases we      
compute the principle component analysis (PCA) for a better 
positioning of the bounding box.  

In the next subsections we present the aforementioned steps 
in detail with the use of visual aids.  

A.  Removing Noise  
Fitting models to a noisy point cloud can be a difficult task. 

This is the reason why noise removal is very important. The 
data-sets on which we tested our algorithm are taken with 
ground-based scanners. These will return point densities that 
dominate from the direction of which the scan was taken, thus 
resulting in an uneven sampling of points.  

For overcoming this problem we propose an analysis of 
point densities. The algorithm is constructing first a kd-tree 
with all the points of the raw data. The number of approximate 
nearest neighbors3 (ANN) for every point is then computed for 
and compared with a median threshold. The points which 
present a larger neighborhood as the threshold are considered 
dense points and the other are considered sparse points.  

 

 

 
Figure 3. Point cloud data with (up) and without (down) noise  

 

The low density points are considered noise and will be   
removed, while the high density points will be used for fitting 
plane models. The results of the noise removal procedure can 
be seen in Fig. 3.  

B.  Fitting 3D Plane Models  
This is the most important part of our method. We believe 

that a reasonable segmentation of the urban scene background 
can be performed by fitting just plane models. For that we will 



 

 

use the RANSAC algorithm [18] combined with a filtering 
procedure for selecting valid models. While fitting one model, 
the algorithm will compare the number of its inliers to a model 
threshold for avoiding parasite plane fittings such as models 
with few inliers. This does not mean that models which contain 
a high number of inliers are automatically validated. There is 
still a possibility that RANSAC could return rogue planes. 
These models may seem to be broken into different regions, 
thus inliers being scattered in 3D space.  

 

 

 
Figure 4. Rogue plane (up) and valid plane (down) 

 

We can solve this impediment by computing a clustering 
procedure inside the model’s inliers. For this we would need 
the kd-tree mentioned in Subsection A. The idea behind this is 
to start with a query point and search for nearest neighbors 
within a given radius. Then, repetitively, search the nearest 

neighbors of the last iteration’s neighbors within the same   
radius until there are no more. In the end, we will keep the 
cluster with the largest number of inliers, thus being the      
validated model.  

As it can be seen in Fig. 4, the rogue plane has its inliers,  
colored with cyan, scattered with large spatial gaps between 
them. In opposition, we also show, in the same figure, the   
correctly fitted plane as an output of our method.  

The fitting procedure will stop when the numbers of points 
drop below a minimum, out of which no reasonable plane can 
be fitted any more.  

C.  Separating Background from Foreground  
In this subsection we will discuss the easiest part of our    

approach. As mentioned in Section I, our goal is to separate the 
large scale objects (e.g. ground, buildings and walls) from the 
small scale objects (e.g. humans, cars, fences and trees).  

 

 

 
Figure 5. Segmenting background (up) from foreground (down) 
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After computing the plane models we will save all their     
inliers into one single point cloud data and this will be the 
background. The remaining points will represent the            
foreground. In Fig. 5 we have the results of the proposed   
segmentation. As it can be seen the foreground point cloud 
contains a large amount of noise.  

D.  Foreground Segmentation  
Our final goal is the robust segmentation of self-independent 

objects of the foreground point cloud. Dealing with a noisy 
data set the method will use the analysis of point densities as 
mentioned in Subsection A. The result is shown in Fig. 6.  

 

 

 
Figure 6. Original (up) and cleaned (down) foreground point cloud 

 

In the end we make use of the clustering procedure presented 
in Subsection B to segment the cleaned foreground into regions 
which make up the self-independent urban objects. For each 
independent region the algorithm will compute a bounding box 
to improve visualization.  

 

V.  EXPERIMENTAL RESULTS 

We applied our method to a couple of urban point clouds 
scenes taken from the repository of the Leibniz University in 
Hannover, Germany. The reason for this is that we are not   
able to perform 3D laser scans of urban environments at the 
current time. Meanwhile the 3D laser scanning system at hand 
is still under development.  

The point clouds used for experimental results have different 
orientations containing common urban objects such as      
buildings, walls, fences, cars, trees and humans. The described   
algorithm returned fairly robust and straightforward results,    
as it can be seen in Fig. 7. The small variations in the results 
for the same dataset are due to the random element in the   
sample consensus approach, but the method gives consistent 
approximations.  

An issue would be the under-segmentation of closely        
positioned objects, like e.g. the two humans in the upper-right   
corner of Fig. 7. For yet another example of under-
segmentation related problems please take a look at Fig. 7,    
but this time in the lower-right-corner, where two cars were put 
in the same bounding box.  

There is one small inconvenience regarding the visualization 
of the fitted models. In the second row of Fig. 7 we see that the 
bounding boxes of the planes are not correctly aligned.  

VI.  CONCLUSIONS AND FUTURE WORK 

In this paper we described a 3D laser scanning system and a 
simple and robust approach for segmenting urban scenes 
represented by point cloud data sets.  

While still being in development, the scanning system is 
showing promising results, as seen in Fig. 2. In the near future 
we will be able to perform 3D urban scans and process our own 
point clouds.  

As for the segmentation approach we can say that it           
accomplished its goals by providing a simple and efficient way 
of separating self-independent urban objects and solving the 
background vs. foreground problems. For the future work we 
propose a procedure for merging overlapping planes and one 
for splitting intersecting models.  

We are also intending to implement an algorithm which 
combines the fitting of plane models with the one of model 
lines for improved segmentation. The reason behind this is that 
line models can approximate better at a detail scale.  

Another direction could be the reconstruction of urban      
environments without the dynamic objects like e.g. cars or  
humans. For this we would need to implement a principle 
component analysis procedure to compute the orientation of 
models and to solve the alignment problem.  
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